
A quantized SSH model: Equilibrium and stretching

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 5219

(http://iopscience.iop.org/0305-4470/31/23/005)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 5219–5231. Printed in the UK PII: S0305-4470(98)89177-4

A quantized SSH model: Equilibrium and stretching

J De Caluwe and A Verbeure
K U Leuven Instituut voor Theoretische Fysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium

Received 10 November 1997

Abstract. We present a one-mode quantized version of the semiclassical Su–Schrieffer–Heeger
model, relevant for the study of conjugated polymers. The model is soluble. We give its
equilibrium states at all temperatures and prove the existence of kink–antikink solutions. We
impose stretching constraints in order to make the model boundary condition invariant. A
uniform stretching of the lattice is considered. A formula for a temperature-dependent sound
velocity is derived. The influence on the critical temperature and on the dimerization is rigorously
derived.

1. Introduction

Conjugated polymer chains have been modelled by theories for one-dimensional metals.
The succession of single and double bindings between the carbon atoms of the polymer is a
consequence of the fact that the dimerization of the lattice lowers the electron energy at the
Fermi level. This is a Peierls instability. The semiclassical Su–Schrieffer–Heeger (SSH)
model [1–3] has been proved to be a good theoretical model for understanding conjugated
polymers. Theπ -electrons are itinerant and hop on the chain and are coupled to the ionic
motions, contributing to the effective elastic energy of the chain, which is modelled by a
classical displacement field. The hopping amplitude of theπ -electrons is a function of the
displacements and this leads to an interaction between the classical and the quantum degrees
of freedom. For a review of this model, see [4]. The success of the model is based on the
persistence of the kink–antikink ground states. With rigorous results, it is proved [5, 6] that
at half-filling, the ground-state configuration of the displacements is either homogeneous or
that it has period two as predicted by the Peierls–Fröhlich (PF) instability. We are interested
in a full quantum version of the model, i.e. a version in which the lattice vibrations are also
quantized. It is expected, but there is no proof, that the Peierls instability persists when the
quantum fluctuations of the positions of the atoms are taken into account [7] for the full
quantized version of the SSH model.

In this paper we do not address this difficult problem, but a more modest one. The PF
instability was initiated by Mattis and Langer [8]. They argued that the one-mode model
interaction of electrons and lattice vibrations should be exactly soluble. The mathematical
basis for the PF instability in this model is given in [9]. Therefore we consider the one-mode
SSH model (see section 2) which can be found out of the full quantized SSH model by
restricting the interaction to the resonant modeq = ±2kF , kF is the Fermi level wavevector,
which is shown to be the responsible term for the PF-phase transition [9]. We call our model
the Mattis–Langer SSH model or the one-mode quantized SSH model.

First we construct explicitly the equilibrium states of this model and prove that the PF
phase transition persists. The proof is based on the analysis of the relevant self-consistency
equation which is derived on the basis of correlation inequalities.
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When quantizing the semi-classical SSH model a boundary term appears, which is linear
in the total stretching of the chain and hence introduces the problem of boundary conditions.
Since we are mainly interested in the bulk properties of the system, we introduce to the
model Hamiltonian a term linear in the stretching with a multiplicative constant, which
we choose in such a way that the supplementary boundary disappears. In doing so we
are inspired by the work of Voset al [10, 11]. In section 3 we compute this constant,
known as the stretching coefficientγ . It not only depends on the temperature, but also on
the quantum-mechanical order parameter, known as the dimerization amplitude. As in the
semiclassical SSH, the effect of the boundary term on the system is a contraction of the
chain.

In section 4 we discuss how to implement a uniform stretching in our model and
what its effect on the phase transition is, namely on the critical temperature and on the
order parameter. As a consequence of a screening effect, by the presence of the electrons,
the sound velocity of the polyacetylene polymer decreases. For the ground state of the
semiclassical SSH model, a formula has already been derived in [11]. We derive a quantum
model for our formula which is valid for all temperatures. Moreover, in our computation
we keep track of the fact that the order parameter does depend on the stretching coefficient.
In the ground-state limit (T → 0) we obtain an expression similar to the one in [11].

2. Model

First let us repeat the SSH model that is used to describe the physics of conjugated polymer
transpolyacetylene (CH)N , on the basis of the one-dimensional tight-binding Hamiltonian.
One considersN material points of a linear lattice

3 = [a, 2a, . . . , Na]

wherea is the lattice distance or the uniform spacing between adjacent CH groups. The first
Brillouin zone is3∗1 = {k : eikNa = 1 or k = 2πn

Na
, n = 0,±1, . . . ,±N

2 }. The semiclassical
SSH Hamiltonian is

H3 = H3,e` +H3,`
where theπ -electron–lattice coupling is

H3,e` = −
∑
x∈3
(t − α(q(x + a)− q(x))(a∗(x)a(x + a)+ h.c.).

a#(x) are the electron creation and annihilation operators,t the bare hopping constant for
the electrons andα the coupling constant of the electron–lattice interaction; the lattice part
of the Hamiltonian is

H3,` = K

2

∑
x∈3
(q(x + a)− q(x))2+ 1

2M

∑
x∈3

p(x)2− γ
∑
x∈3
(q(x + a)− q(x)).

M is the mass of the CH group,K the harmonic force constant for bond length deviations
from the equal spacing andγ is the stretching force on a finite chain. The last term is
introduced [10–13] in the Hamiltonian in order to counterbalance the compression of the
total length of the lattice which is a consequence of the electron–lattice interaction.

The first step is to quantize the lattice vibrations, i.e. to considerq(x) and p(x) as
operators satisfying the commutation relations

[q(x), p(y)] = iδx,y x, y ∈ 3.
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If we introduce the Fourier-transforms,Qk, Pk:

q(x) = 1√
N

∑
k∈3∗1

eikxQk p(x) = 1√
N

∑
k∈31

eikxPk

then the lattice partH3,` becomes

H3,r = P 2
0

2M
+ 1

2N

∑
k∈3∗1
k 6=0

PkP−k + K
2

∑
k∈3∗1
k 6=0

QkQ−k2(1− coska)

− K
2N

∑
k∈3∗1
k 6=0

Qk(e
ika − 1)


2

− γ√
N

∑
k∈3∗1
k 6=0

Qk(1− eika).

In the following we disregard the kinetic energy of the centre of mass. Introducing the
creation and annihilation operators fork 6= 0 of the phonons,

bk,3 = 1√
2M�k

(M�kQk + iP−k) b∗k,3 = (bk,3)∗

and the phonon spectrum,

�k =
(

2K

M
(1− coska)

)1/2

one obtains

H3,` =
∑
k∈3∗1

�k

(
b∗k,3bk,3 +

1

2

)
− K

4M�
(d3 + d∗3)2− 0(d3 + d∗3) (1)

where

d3 = 1√
N

∑
k∈3∗1

bk,3(1− e−ika)

(
�

�k

)1/2

� = �q q = π

a
0 = γ

(2M�)1/2
.

The irrelevant constant
∑

k
�k
2 in (1) is again disregarded.

As far as the electron–lattice partH3,e` of the Hamiltonian is concerned, we also
transform it to momentum space. The electron creation and annihilation operators are

a(x) = 1√
N

∑
k∈3∗1

eikxak and a∗k = (ak)∗.

The hopping term becomes

−t
∑
x∈3

a∗(x)a(x + a)+ h.c.

= −
∑
k∈3∗1

2t (coska)a∗k ak +
t

N

∑
kk′∈3∗1

(eik′aa∗k ak′ + h.c.)

and the electron–phonon interaction:

α
∑
x∈3
(q(x + a)− q(x))(a∗(x)a(x)+ h.c.)

= λ√
N

∑
k,k′∈3∗1

(
bk,3(e

ika − 1)

(
�

�k

)1/2

+ h.c.

)(
eik′aa∗k′+kak′ + h.c.

)
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+ λ
N
(d3 + d∗3)

∑
k,k′∈3∗1

(
eik′aa∗k ak′ + h.c.

)
where

λ = α

(2M�)1/2
.

Collecting the previous calculations and leaving out the non-extensive contributions from
the potential term and the hopping term, one obtains the fully quantized form of the SSH
model:

H3 = −
∑
k∈3∗1

2t (coska)a∗k ak +
∑
k∈3∗1

�kb
∗
k,3bk,3

+ λ√
N

∑
k,k′

(
eik′aa∗k′+kak′ + h.c.

)(
bk,3(e

ika − 1)

(
�

�k

)1/2

+ h.c.

)

+
(
λ

N

∑
k,k′

(
eik′aa∗k ak′ + h.c.

)
− 0

)
(d3 + d∗3). (2)

Quantizing the lattice vibrations, the interaction inH3,e` yields a supplementary boundary
term

λ

N

∑
k,k′
(eik′aa∗k ak′ + h.c.)(d3 + d∗3).

This term depends on the boundary conditions and even disappears for periodic boundary
conditions. However, with the aim of making the model and system boundary condition
invariant, this term was introduced. The constantγ will be chosen in such a way that the
last term of (2) has a zero expectation value in the equilibrium states of the system. We
remark that this term has no contribution to the energy density, and therefore only enters if
one considers finite-size effects.

In the next section we shall also consider the effects of a uniform stretching of the
chain. Therefore we keep the0 = γ /(2M�)1/2 term along at this moment. In this case
the value ofγ will affect the sound velocity in the chain.

The model (2) is not an exactly soluble model, owing to the presence of electron–phonon
couplings in the interaction for all modes. Inspired by the Mattis–Langer model [8] and
also by [9], where it is rigorously shown that the modek = π

a
is solely responsible for the

occurence of the Peierls transition, we initially propose to study the one-mode case, which
we obtain from the interaction in (2) by leaving out all interactions withk 6= π

a
. In a natural

way, we also have to leave out the corresponding terms in the boundary contribution term.
All of this leads to the consideration of the following one-mode quantized SSH model

H3 = 2t
∑
k∈3∗1

(coska)a∗k ak +
∑
k∈3∗1

�kb
∗
k,3bk,3 −

2λ√
N

∑
k∈3∗1

(eikaa∗k+qak + h.c.)(b3 + b∗3)

+
(
λ

N

∑
k∈3∗1

2(coska)a∗k ak − 0
)
(d3 + d∗3) (3)

whereq = π
a

and b3 = bq,3. This is the model which we shall study further and which
is a Mattis–Langer version of the quantized semiclassical SSH model. One realizes that
treating this version of the model is only a first step in the study of the fully quantized SSH
model. However, one guesses that the physics one-mode version yields a good idea of the
physical properties described by the fully quantized model.
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3. Equilibrium states and Peierls transition

First we characterize the equilibrium states in the thermodynamic limit. There are many
ways of doing that. We follow the method used in [9] which is based on correlation
inequalities. It is advantageous for us here in the sense that one can see that the equilibrium
states are determined by the commutator with the Hamiltonian.

Any equilibrium state at inverse temperature, denoted byωβ in the thermodynamic limit
(3→ Z), for a system given by the local HamiltoniansH3 is a solution of the correlation
inequalities given by [14]:

lim
3→Z

βωβ(A
∗[H3,A]) 6 ωβ(A∗A) ln

ωβ(A
∗A)

ωβ(AA∗)
(4)

for all local observablesA. This characterization holds, of course, also for finite-volume
Gibbs states.

For our purposes, it is important to specify the structure of the local algebra of
observables. LetH = `2(Za) andA± ≡ A±(H) theCAR(+), respectively theCCR(−)
algebras for the one-particle spaceH; these are the electron and phonon observables. We
also use the obvious notationsA3± = A±(`2(3)) for the observables confined to the finite-
volume3. The algebra of observables for our total system is then given by the tensor
product:

A = A+ ⊗A−
and

A3 = A3+ ⊗A3−.
The algebra of all local observables is given by

⋃
3

A3.

Up to an isomorphism theCAR fermion algebraA+ has the structure

A+ = ⊗n∈ZaA+(C) = ⊗n∈Z2aA+(C2).

Because of this representation and because the operatorb3 is Z2a-permutation invariant,
one can use the result of [15] and write the equilibrium stateωβ , the solution of (4), as an
integral over equilibrium product states on the product algebraA = A+ ⊗A−:

ωβ =
∫
µ(dτ)η+β,τ ⊗ η−β,τ

whereη±β,τ are extremalZ2a-permutation invariant states onA±. This means that we can
limit our search for equilibrium states to the search for the statesη±β . We drop the labelτ
for convenience.

Furthermore, asωβ is the limit (3→ Z) state of the Gibbs statesω3β , also theη±β are
limit states of finite volume states for effective Hamiltonians defined by:

lim
3
(η+β ⊗ η−β )(X∗[H3,X]) = lim

3
(η
+,3
β ⊗ η−,3β )(X∗[H3,X])

= lim
3
η
+,3
β (X∗[H eff

+,3,X])

for all X ∈ A+ and analogously forH eff
−,3. One can easily find the effective Hamiltonians:

H eff
3 = H eff

+,3 +H eff
−,3 (5)
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where

H eff
+3 =

∑
k

−2

(
t − λL3

N

)
(coska)a∗k ak − 2λσ3

∑
k

(eikaa∗k+qak + h.c.)

H eff
−3 =

∑
k

�kb
∗
k,3bk,3 − 2λχ3(b3 + b∗3)+

(
λ

N

∑
k

(2 coska)ρ3(k)− 0
)
(d3 + d∗3)

where

σ3 = η−β
(
b3 + b∗3√

N

)
L3 = η−β (d3 + d∗3)

χ3 = η+β
(

1√
N

∑
k

(eikaa∗k+qak + h.c.)

)
ρ3(k) = η+β (a∗k ak).

Time invariance of the equilibrium stateηβ = η+β ⊗ η−β yields for each finite volume in
particular

η
+,3
β ⊗ η−,3β ([H eff

3 , b3]) = 0

which gives the following consistency equation between the electron and the phonon
subsystem

�σ3 = 4λ
χ3√
N
+O

(
1

N

)
. (6)

The systemsH3 (3) andH eff
3 (5) have the same expectation values in the thermodynamic

limit for all quasilocal observables. Therefore theη±β are the equilibrium states for the
effective HamiltoniansH eff

± . Since the latter ones are at most quadratic in the creation and
annihilation operators the statesη±β are completely known, i.e. all expectation values or
correlations are computable. Therefore the modelH3 (3) is sometimes known as soluble.
However, the statesη+β andη−β are coupled to each other by the consistency equation (6).
Already on the basis of the symmetry properties of these states the thermodynamic limit
(3→ Z) of equation (6) is guaranteed. A standard and easy but tedious computation yields
the following explicit form of the equation in the thermodynamic limit

π�

16λ2a
σ = σG(β, σ ) (7)

where

G(β, σ ) =
∫ π

2a

− π
2a

dk sin2 ka
tanhβE(k,σ )2

E(k, σ )

E(k, σ ) = (ε(k)2+ ϕ(k, σ )2)1/2 signε(k)

ε(k) = −2t coska

ϕ(k, σ ) = 4λσ sinka.

We remark thatE(k, σ ) is the spectrum of the electronic excitations which is obtained
by diagonalizing the HamiltonianH eff

+,3. We are now ready to formulate the proof of the
existence of the Peierls phase transition.

Theorem 3.1.There exists a critical temperatureTc such that:
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(i) for T > Tc, the unique solution of (7) isσ = 0;
(ii) for T < Tc, equation (7) has the solutionsσ = 0 andσ = σ0 6= 0, whereσ0 satisfies

G(β, σ0) = π�

16λ2a
.

If σ0 > 0, then the electronic spectrumE(k, σ0) has a gap atk = π
2a :

lim
k→± π

2a

E(k, σ0) = ±4λσ0.

Proof. Clearly σ = 0 is always a solution of equation (7). Forσ 6= 0 (7) becomes

π�

16λ2a
= G(β, σ ).

If σ tends to zero, thenG(β, σ ) tends toG(β, 0), which diverges for largeβ. Indeed the
integrand ofG(β, 0) (see (7)) has non-integrable singularities at the edges of the integration
interval. Hence there exists aβc or Tc such that

G(βc, 0) = π�

16λ2a
.

On the other handσ → G(β, σ ) is monotonically decreasing to zero. Hence forT < Tc,
there exists a valueσ0 such that

G(β, σ0) = π�

16λ2a
σ0 = σ0(T ).

This proves the existence of a second order phase transition atTc. The rest of the theorem
is straightforward. �

The phase transition is seen by the creation of the gap in the electronic spectrum. It is
also seen in the phonon properties of the model. These must be derived from the boson
term,H eff

− , of the effective Hamiltonian. AtT = Tc the phonon state obtains a change from
Za for T > Tc, to Z2a translation symmetry forT < Tc, i.e. one obtains a structural phase
transition atTc. Indeed consider the position operator

q(x) = 1√
N

∑
k∈3∗1

eikxQk = 1√
N

∑
k∈3∗1

eikx bk,3 + b∗−k,3√
2M�k

.

By reusing the diagonalized form ofH eff
+ , one finds:

η−β (q(x)) =


eiqx

√
2M�

σ0 for T < Tc

0 for T > Tc.
(8)

In this derivation we also used that fork 6= q = π
a

:

lim
3
η−β (
√
Nbk,3) = 0 (9)

which we discuss at the end of this section. Result (8) means that one obtains boson
condensation in thek = q phonon mode. For our model it means that there exists a critical
temperatureTc such that, forT < Tc, the polymer transpolyacetylene is dimerized. The
dimerization amplitude is given by

u = |σ0|√
2M�
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which is propertional to the order parameter.
Now we are also able to compute explicitly the total stretching of the chain. It is given

by

L = lim
3
L3 = lim

3
η−β (d3 + d∗3).

We remark that:
d3 + d∗3√

2M�
= q(N)− q(1).

One computes

L = 2σ + 8

�

(
0 − λa

π

∫ π
a

− π
a

dk ρβ(k, σ ) coska

)
(10)

where

ρβ(k, σ ) = lim
3
η+β (a

∗
k ak) =

1

2
− ε(k) tanhβE(k,σ )2

2E(k, σ )
.

The first contribution inL is directly related to the phase transition order parameter. The
second contribution comes from the compensating0-force term in the Hamiltonian. The
third term in (10) is exactly the amount of contraction of the chain. In order to make our
model boundary condition invariant we define0 as follows

γ

(2M�)1/2
= 0 = 0(β, σ ) = λa

π

∫ π
a

− π
a

dk ρβ(k, σ ) coska. (11)

This means that the stretching force is temperature and order parameter dependent. In the
literature [12] one finds often the value0 = 4λ

π
. However, this value was derived before,

although only in the case of the ground state (T = 0) and without dimerization (σ = 0).
If we compute (11) in this case, one obtains0 = 2λ

π
, i.e. a factor of 2 difference. This

difference is a simple consequence of the fact that we did not take into account the spin of
the electrons, yielding a doubling of the densityρβ(k, σ ). In other words, formula (11) gives
a correct generalization of the value of the stretching force, extended to finite temperatures
and dependent on the order parameter in a one-mode quantized SSH model. It is consistent
with what can be found in the literature.

Finally, we remark that (9) follows straightforwardly from (11) and the fact that0 is
finite.

4. Uniform stretching

The content of this section is very much inspired by the work of Voset al [10, 11] in which
they consider the ground state of the semi classical SSH model. We apply their ideas to
our one-mode quantum SSH model and consider the influence of a uniform stretching of
the chain on the critical temperature, and the order parameter at all temperatures. We also
discuss its influence on the sound velocity.

A uniform stretching is a mode (k = 0)-phenomenon for a lattice with spacing parameter
a. As is conceived in [10, 11], we describe it by performing a transformation:

q(x + a)− q(x)→ q(x + a)− q(x)+ δ
in the original Hamiltonian (see section 2);δ is the stretching parameter, measuring the
amount of uniform stretching.
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The effect of this transformation in the Hamiltonian results in a substitution of the
hopping parametert into t − αδ, in adding an elastic termNKδ2/2 and in substracting a
stretching termNγ δ. We forget about all changes to a lowerN -order in the Hamiltonian.

Initially it is clear that this modification of the model Hamiltonian does not affect the
solvability of the model as explained in section 3. Mathematically the effect on the Peierls
transformation amounts solely to the substitution of the hopping parametert by t − αt . In
the following we study some effects of this uniform stretching.

4.1. Influence on critical temperature

The critical temperature,Tc(δ), is now implicitly defined by the following equation (see
theorem 3.1)

G(βc(δ), δ) = π�

16λ2a
(12)

where

G(βc(δ), δ) =
∫
− π

a

dk sin2 ka
tanhβc(δ)E(k,δ)2

E(k, δ)

E(k, δ) = −2(t − αδ) coska.

We remark that the critical temperatureTc (or βc) depends on the parameterδ. In the
function G(βc(δ), δ), for notational convenience we do not note the dependence on the
order parameter, which is equal to zero atTc. We look for the behaviour ofTc(δ) as a
function of δ in the neighbourhood ofδ = 0. For αδ

t
� 1, one has

βc(δ) ≈ βc(0)+ β ′c(0)
αδ

t
.

We computeβ ′c(0) from (12):

β ′c(0) = −
∂G(βc(δ),δ)

∂δ

∣∣∣
δ=0

∂G(βc(δ),δ)
∂βc(δ)

∣∣∣
δ=0

=
βc(0)

2

∫ π
2a
− π

2a
dk sin2 ka

(
1

cosh2 x
− tanhx

x

)∣∣∣
x= βc(0)E(k,0)

2∫ π
2a
− π

2a
dk sin2 ka

2 cosh2 βc(0)E(k,0)
2

.

As βc(0) > 0, the sign ofβ ′c(0) is determined by the sign of the function

x → f (x) = tanhx

x
− 1

cosh2 x
x ∈ R.

However,f (x) > 0 is equivalent to

sinhx coshx

x
> 1

and in turn, to

sinh 2x

2x
> 1.

It follows thatβ ′c(0) < 0, hence we have the following.

Theorem 4.1.At δ = 0, the critical temperatureTc is an increasing function of the uniform
stretching parameter.

From a physical point of view, it is rather clear that an increasing uniform stretching is
like making the hopping probability smaller while the electron–phonon interaction remains
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unchanged. The net result is like enhancing the interaction and hence makes the phase
transition more probable. This is expressed by an increasing critical temperature. The same
phenomenon can be seen if one notes the influence of the stretching on the order parameter
at constant temperature.

4.2. Influence on order parameter

On the basis of theorem 3.1, forβ > βc, the order parameterσ(δ), as a function ofδ is
determined by the equation:

G(β, δ, σ (δ)) = π�

16λ2a
(13)

where

G(β, δ, σ (δ)) =
∫ π

2a

− π
2a

dk sin2 ka
tanhβE(k,δ,σ (δ))2

E(k, δ, σ (δ))

E(k, δ, σ (δ)) = [4(t − αδ)2 cos2 ka + 16λ2σ 2(δ) sin2 ka]1/2 sign[−2(t − αδ) coska].

For αδ
t
� 1, one can again consider

σ(δ) ≈ σ(0)+ σ ′(0)αδ
t
.

We computeσ ′(0) from (13):

σ ′(0) = dσ(δ)

dδ

∣∣∣∣
δ=0

= −
∂G(β,δ,σ (δ))

∂δ

∣∣∣
δ=0

∂G(β,δ,σ (δ))
∂σ (δ)

∣∣∣
δ=0

=
∫ π

2a
− π

2a
dk
(
t sinka coska
E(k,0,σ (0))

)2
I (β, k, σ (0))∫ π

2a
− π

2a
dkσ(0)

(
2λ sin2 ka
E(k,0,σ (0))

)2
I (β, k, σ (0))

where

I (β, k, σ (0)) = f (x) = tanhx

x
− 1

cosh2 x
> 0

x = βE(k, 0, σ (0))

2
.

Hence, one has:

σ(δ) ≈ σ(0)
(

1+ 1

σ 2(0)
1

)
with 1 > 0.

We have proved the following.

Theorem 4.2..Up to the first-order in the stretching parameter, the absolute value of the
order parameter increases.

4.3. Sound velocity

The sound velocity in conjugated polymers decreases because of the screening effect which
is itself a consequence of the presence of the electrons [16]. In [10, 11], Voset al derived a
rigorous formula for the sound velocity, applicable in the semiclassical SSH model, where
the lattice vibrations are considered as classical variables. Their arguments are based on
classical hydrodynamics. In principle our model (3) is fully quantum mechanical, and there
do not exist quantum-hydrodynamical equations. We now face a basic problem, which is
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not as easy to overcome. Therefore we hope that the starting point definition of the sound
velocity given by [10]:

c = a√
M

√
d2ε

dδ2
(14)

is also a good enough approximation for the quantum case. In (14)M = aρ, the mass,ρ
the density, andε the energy per lattice cell. The derivatives with respect toδ have to be
evaluated at equilibrium, i.e. atδ = 0.

In our case the energy densityε is given by

ε = lim
3
(η+β ⊗ η−β )

(
H3

N

)
whereH3 is given by the one-mode quantized SSH model. It has the form

ε = ε+ + ε− + Kδ
2

2
− γ δ (15)

where

ε± = lim
3
η±β

(
H eff
±,3
N

)
.

Using the explicit diagonalization ofH eff
± , and the self-consistency equation (7) one obtains

explicitly:

ε+ = − a

2π

∫ π
2a

− π
2a

dk E(k, δ, σ ) tanh
βE(k, δ, σ )

2

ε− = a

2π

∫ π
a

− π
a

dk
�k

1+ eβ�k
+ �σ

2

4
.

We also recall (11) and the relation

0 = γ

(2M�)1/2
.

Thereforeγ in (15) depends onσ , but also onδ:

γ (δ, σ ) = αa

π

∫ π
2a

− π
2a

dk 2(t − αδ) cos2 ka
tanhβE(k,δ,σ )2

E(k, δ, σ )
.

Collecting all this in formula (15), one obtains explicitly the energy densityε as a function
of δ:

ε = ε(δ, σ (δ)). (16)

Consequently from (14) we have a formula for the sound velocity, which generalizes the
one in [10], and can be written as:

c = a√
M

[
εδδ + 2εσδ

dσ

dδ
+ εσσ

(
dσ

dδ

)2

+ εσ d2σ

dδ2

]1/2

(17)

where we used the notation

εxy = ∂2ε

∂x∂y

with x, y equal toδ and/orσ .
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A rather elegant form for the sound velocity can be found as follows. From the self-
consistency equation (13) one computesdσ

dδ in terms of the derivatives of the functionG:

Gδ + Gσ dσ

dδ
= 0.

One more derivative yieldsd
2σ

dδ2 :

Gδδ + 2Gσδ
dσ

dδ
+ Gσσ

(
dσ

dδ

)2

+ Gδ d2σ

dδ2
= 0

and the sound velocity (17) can be written in the following compact form

c = c0

(
θδδ + 2θσδ dσ

dδ + θσσ
(

dσ
dδ

)2
KGσ

)1/2

(18)

wherec0 = a
√

K
M

is the bare sound velocity and

θxy = εxyGσ − Gxyεσ .
Expression (18) is somewhat complicated because of the presence of the integrals, which
should be approached numerically.

An interesting aspect of (18) is that the formula is valid for all temperatures, in particular
it allows the possibility of studying the sound velocity in the neighbourhood of the critical
temperature. However, as the formula is rather complicated, for the moment we leave this
analysis for another occasion at which we also intend to study the quantum fluctuations
in the critical region. Instead we limit ourselves here to looking at the ground-state limit
(T → 0) of (18) and its comparison with the ground-state result of [10, 11].

Taking the ground-state limitβ →∞, it is, first of all, interesting to remark that

εσ = 0 and εσσ > 0

in full correspondence with the variational principle. One also checks that

dσ

dδ
= − εσδ

2εσσ
(19)

yielding for (17) in the ground state, the following formula

c = c0

(
εδδ

K
− 3

4K

ε2
σδ

εσσ

)1/2

(20)

which, up to a factor of34, does coincide with the expression for the sound velocity in
[10, 11] for the SSH model. The origin of the discrepancy lies in the fact that we have
taken into account theσ -dependence of the counterterm factorγ , based on formula (11).
Indeed if one omits this dependence, then one obtains:

dσ

dδ
= − εσδ

εσσ
(21)

instead of relation (20). If one uses (21) one obtains straightforwardly the formula

c = c0

(
εδδ

K
− ε2

σδ

Kεσσ

)1/2

which is the result of [10, 11]. This remark stresses another aspect of the content of our
formula (18), compared with what is known in the literature.
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As a conclusion of the computation of the sound velocity in the one-mode quantum
SSH model, one should make it clear that we started from formula (14), which is
based on classical hydrodynamics. A genuine quantum base for it is lacking. Quantum
hydrodynamics is inexistent in the sense that very little has been done atab initio derivations
of the hydrodynamical equations for quantum systems. The situation is not clear as to what
extent quantum effects are relevant and on which hydrodynamic level they are important.
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